
CS302

GPU: Fine-grain 
synchronization 

Spring 2025
Prof. Babak Falsafi, Prof. Arkaprava Basu
parsa.epfl.ch/course-info/cs302/

Some of the slides are from Derek R Hower, Adwait Jog,  Wen-Mei Hwu, Steve Lumetta,  Babak Falsafi, Andreas 
Moshovos, and from the companion material of the book “Programming Massively Parallel Processors”
Copyright 2025



Where are We?
u This lecture

u Fine-grain Synchronization
u Data races

u Next class
u Warp primitives, Tensor 

cores, Multi-tenancy

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May



CS302 – Spring 2025 Lec.13.2 -  Slide 3

Review: Basic Synchornizaiton 

u Synchornizaiton in GPU for bulk-synchrnous program

u Bulk synchornous programs are common
o Threads/threadblocks work mostly independently on separate portions of data
o Many threads synchornize at the same time in coarse granuality (infrequently)

u Threadblock barrier (__syncthreads) to waits for all threads of a 
block before proceeding 

u Kernel decompositon for global synchornizaiton 



CS302 – Spring 2025 Lec.13.2 -  Slide 4

Fine-grain Synchornizaiton 

u Synchronization is defined for each individual thread
o Not a barrier
o Each thread can execute these operations independently 

u Atomic operations

u Memory fence operations  

u Lock/unlock (Mutual exclusion) in CUDA programs 



CS302 – Spring 2025 Lec.13.2 -  Slide 5

Atomic operations in CUDA

u Recall from Lecture 6.2: Atomics are Read-Modify-Write
o Reads a memory location, modifies/updates the value read, writes back the result
o Different flavors of atomics based on the “Modify” function

u Hardware ensures that all parts of an atomic operation happen 
without interruption 
o Atomic operations are typically performed in shared LLC and are slow

u Serializes if two threads issue atomic operation to the same address 



CS302 – Spring 2025 Lec.13.2 -  Slide 6

Atomic operations in CUDA

u Atomics in CUDA are intrinsic fucntions
o Function calls are typically translated to a single ISA instructions 
o Many flavors: add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap) 

u Example: 
    int atomicAdd(int* address, int val) 

Reads the 32-bit word old pointed to by address in global or shared memory, computes (old 
+ val), and stores the result back to memory at the same address. The function returns old. 

Different operand types possible: unsigned int, long, float…



CS302 – Spring 2025 Lec.13.2 -  Slide 7

Atomic operations in CUDA

u int atomicExch(int* address, int val)
o Reads the 32-bit or 64-bit word old located at the address address in global 

or shared memory and stores val back to memory at the same address. The 
function returns old. 

u int atomicCAS(int* address, int compare, int val)
o Reads the 16-bit, 32-bit or 64-bit word old located at the address address in 

global or shared memory, computes (old == compare ? val : old), and 
stores the result back to memory at the same address. The function returns 
old. 



CS302 – Spring 2025 Lec.13.2 -  Slide 8

Example use of Atomics: Parallel Histogram Generation 

u Count num. of ASCII characters in an input text
u Input: ASCII characters in array format
u Output: Histogram w. each bucket, # occurrences

I like to develop efficient 
software for multicores, 
GPUs and 
multiprocessors. As 
such, I find this course of 
great use for my future 
academic and 
professional career.
Furthermore, I like to 
learn about the parallel 
hardware and software 
in my cellphone.

O
cc

ur
re

nc
es

a b c d ...

Thread 0 

Thread 1 

Thread 2 

Thread 3 



CS302 – Spring 2025 Lec.13.2 -  Slide 9

Example use of Atomics: Parallel Histogram Generation 
__global__ void hist_calc(char *data, unsigned int length,       
                          unsigned int * histogram)
{
 unsigned int index = blockIdx.x * blockDim.x + threadIDx.x; 

 if (index < length) {
 int position = data[i] – ‘a’; 

 if (position >= 0 && position < 26) {
  atomicAdd(&histogram[position], 1);
 }  
  }

}  Input

Necessary for correctness

Serialized updates
Histogram



CS302 – Spring 2025 Lec.13.2 -  Slide 10

Example use of Atomics: Parallel Histogram Generation 

u Reduce serialization through privatization
o Each threadblock keeps their own copy of histogram in the shared memory
o Merge private copies in the global memory in the next phase

Shared Memory

Global Memory

Phase 1

Phase 2



CS302 – Spring 2025 Lec.13.2 -  Slide 11

Example use of Atomics: Parallel Histogram Generation 
__global__ void hist_calc(char *data, unsigned int length,       
                          unsigned int * histogram){

__shared__ unsigned int histo_s[NUM_BINS]; //Number of bins in the histogram

//initialize private copies in parallel (BTW, why is there a loop?) 
For (unsigned int bin = threadIdx.x; bin < NUM_BINS; bin += blockDim.x) {
 histo_s[bin] = 0;
}
  __syncthreads();

 unsigned int index = blockIdx.x * blockDim.x + threadIDx.x; 
 if (index < length) {
 int position = data[i] – ‘a’; 
 if (position >= 0 && position < 26) {
  atomicAdd(&histo_s[position], 1); //Atomic on shared memory
 }  
  }
   __syncthreads();
//Merging results onto the final histogram in the global memory 
for (unsigned int bin = threadIdx.x; bin < NUM_BINS; bin += blockDim.x) {
 unsigned int val = histo_s[bin]; 
 if (val > 0) atomicAdd(&histo[bin], val);  //Atomic add on global memory
}

}  

Advantages of this implementation:
(1)Less contention
(2)Shared memory atomics are faster 



CS302 – Spring 2025 Lec.13.2 -  Slide 12

Twin Challenges of Synchronization in CUDA programs

u Weak memory consistency model 

u Lack of hardware cache coherence



CS302 – Spring 2025 Lec.13.2 -  Slide 13

Weak Memory Model of CUDA

u CUDA has a weak memory model
o Informally, the order in which a thread writes data to memory is not necessarily the order in 

which the data is observed being written by another thread
   __device__ int X = 1, Y = 2;
            thread 1      thread2
__device__ void writeXY()    __device __void readXY ()
{       {
 X = 10;      int B = Y;
 Y = 20;      int A = X; 
}       }
u CUDA also has relaxed atomics 

o Loads, stores can bypass atomic operation  

u __



CS302 – Spring 2025 Lec.13.2 -  Slide 14

GPU L1 Caches are NOT Coherent 

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $

Private 
to each 
SM

Logically 
shared 
across all 
SMs of a 
GPU

REG REG REG REG REG REG No HW cache 
coherence 
for L1 caches



CS302 – Spring 2025 Lec.13.2 -  Slide 15

Memory Fence Operations in CUDA 

u Fence instruction ( __threadfence) for ordering read/writes 
 
 “ensures that no writes made by the calling thread after the 

__threadfence() are observed by any thread in the device as 
occurring before any write by the calling thread before the

 __threadfence()”    --- NVIDIA documentation



CS302 – Spring 2025 Lec.13.2 -  Slide 16

Memory Fence Operations in CUDA

u Informally, if a thread:

u makes a change A to a data item in global or shared memory

u executes a __threadfence

u makes another change B to that data in the global or shared item

u  Then another thread in the grid cannot read that item and observe 
B, and then later read that item and observe A.



CS302 – Spring 2025 Lec.13.2 -  Slide 17

Memory Fence operations in CUDA

u More generally, __threadfence serves two purposes

u Visibility: Writes appearing before the fence by the calling thread 
must become visible to any threads in the grid before any writes 
after the fence in the calling thread. 

u Ordering: Load, stores, atomics in the calling thread cannot be re-
ordered across a __threadfence.  



CS302 – Spring 2025 Lec.13.2 -  Slide 18

Memory Fence Operations in CUDA

   __device__ int X = 1, Y = 2;
            thread 1      thread2
__device__ void writeXY()    __device __void readXY ()
{       {
 X = 10;      int B = Y;
 __threadfence;     __threadfence;
 Y = 20;      int A = X; 
}       }

A= 1 and B = 20 
is not possible



CS302 – Spring 2025 Lec.13.2 -  Slide 19

GPU L1 Caches are not Coherent: Need Fence 

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $

Shared 
L2 cache

REG REG REG REG REG REG __threadfence
writes back to 
L2  

__threadfence
Invalidates L1 
contents

Private 
L1 cache

__threadfence __threadfence 



CS302 – Spring 2025 Lec.13.2 -  Slide 20

Example use of Fence: Parallel Sum of an Array of Integers

u Each threadblock calculates the partial sum of a sub-array
u A thread from each threadblock writes its partial result to memory
u The block that finishes last adds partial sums to the final sum



CS302 – Spring 2025 Lec.13.2 -  Slide 21

Example use of Fence: Parallel Sum of an Array of Integers
__device__ unsigned int count = 0;__shared__ bool isLastBlockDone;
__global__ void sum(const float* array, unsigned int N,
                    volatile float* result)
{
 float partialSum = calculatePartialSum(array, N); //Computes partial sum of the array
    if (threadIdx.x == 0) {
  result[blockIdx.x] = partialSum;
  __threadfence();       // Ensures partialSum is written before count is incremented  
         unsigned int value = atomicInc(&count, gridDim.x);  //Increments count if below # of blocks
  isLastBlockDone = (value == (gridDim.x - 1));   // Is it the last block?
    }
    __syncthreads();  //Guarantees that all threads of a block see the updated ‘isLastBlockDone’

    if (isLastBlockDone) {
  float totalSum = calculateTotalSum(result);
         if (threadIdx.x == 0) {   //Thread  0 of the last block updates the final sum
   result[0] = totalSum;
        }
    }
}



CS302 – Spring 2025 Lec.13.2 -  Slide 22

Compiler can Allocate Variables in Registers

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $
SM

L1 $

Remember 
L1 cache is 
incoherent 

REG REG REG REG REG REG Compiler can 
cache global 
or shared 
memory 
variables in 
registers/L1 
cache

‘volatile’ 
qualifier directs 
compiler
NOT to allocate 
a variable in 
register or L1 



CS302 – Spring 2025 Lec.13.2 -  Slide 23

Example (2) use of fences: Producer – Consumer Pattern 

u Producer writes to shared data items it wants to communicate 
u Producer updates a flag to notify data item is ready 

u Consumer waits for the flag to be updated in a loop
u Consumer reads the data items for processing  



CS302 – Spring 2025 Lec.13.2 -  Slide 24

Example (2) use of fences: Producer – Consumer Pattern 

Stripped down code snippet from NVIDIA’s cuML library

volatile Flags *mFlags = flags + blockIdx.x;

mFlag->sum = SUM; // Write to data

__threadfence(); //Ensures status is updated 
                             // after write to data

mFlag->status = 1; //Set flag to notify consumer

volatile Flags *sFlags = flags + (blockIdx.x - 1) 

while (sFlag->status == 0);  // wait in busy loop

__threadfence();  //Ensures data is not read
     // before updated status is read                

accumulate += sFlag->sum; //Read data item

(global) volatile Flags *flags;  //Structure Flags contain both data and status flag 

Producer Consumer



CS302 – Spring 2025 Lec.13.2 -  Slide 25

Lock and Unlock (Mutual Exclusion) in CUDA program 

__global__ int lock = 0;  // 0 à lock is free. 1 à locked

while (atomicCAS(&lock, 0, 1) == 0);  // wait until lock value is zero
 __threadfence();     // Ensures that code in the critical section 
    //does not start executing before lock is acquired
 //critical section
 --------
 ------

__threadfence();        //Ensures the critical section finishes before lock release
atomicExcg(&lock, 0); // Release lock by setting it to zero



CS302 – Spring 2025 Lec.13.2 -  Slide 26

Example Use of Locks: Parallel Hash Table Insertion 

F(x)

abc
nx2

d4w
xy3

nfy

Hash table
(linear probing)

Hash collision

Need locks upon 
hash collisionbbc

rws

wsx

Hash function



CS302 – Spring 2025 Lec.13.2 -  Slide 27

Example Use of Locks: Parallel Hash Table Insertion 
__device__ void hash_insert ( tHashTable *g_hashtable, unsigned key, unsigned value)
{
      ……………..
     ……………..
    unsigned hash = hash_func(key);  //hash index
    BaseEntry *base = &g_hashtable->mValues[hash];
   
    while(atomicCAS(&base->mLock, 0, 1) == 0);   //Lock acquire
 __threadfence;

         ent->mKey = key; ent->mValue = value;
         ent->mNext = base->mIndex;
         g_hashtable->mValues[hash].mIndex = ent;

         __threadfence; 
         atomicExcg(&base->mLock, 0);   //Unlock 
      }
   }
}



CS302 – Spring 2025 Lec.13.2 -  Slide 28

Summary: Fine-grain Synchronization in CUDA

u Bulk synchronous programs use barrier and kernel decomposition

u Fence and atomic operations allow fine-grain synchronization 
defined for each individual thread

u Fence and atomics together can create lock and unlock operations 


