CS302

GPU: Fine-grain
synchronization

Spring 2025
Prof. Babak Falsafi, Prof. Arkaprava Basu
parsa.epfl.ch/course-info/cs302/

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi, Andreas
Moshovos, and from the companion material of the book “Programming Massively Parallel Processors”
Copyright 2025

Where are We? |
& This lecture

¢ Fine-grain Synchronization
& Dataraces
5-Mar

12-Mar & Nextclass
19-Mar
26-Mar

2-Apr

& Warp primitives, Tensor
cores, Multi-tenancy

9

5-Mar_|
12-Mar
19-Mar
26-Mar
2-Apr |
9-Apr
23-Apr |
30-Apr |
7-May)

-Apr
16 18-Apr
22-Apr |23-Apr [24-Apr [25-Apr
30-Apr
7-May

\

i

i

N
®
<
©

<

Review: Basic Synchornizaiton

¢ Synchornizaiton in GPU for bulk-synchrnous program

¢ Bulk synchornous programs are common

o Threads/threadblocks work mostly independently on separate portions of data
o Many threads synchornize at the same time in coarse granuality (infrequently)

¢ Threadblock barrier (___syncthreads) to waits for all threads of a
block before proceeding

¢ Kernel decompositon for global synchornizaiton

CS302 — Spring 2025 Lec.13.2 - Slide 3

Fine-grain Synchornizaiton

¢ Synchronization is defined for each individual thread

o Not a barrier
o Each thread can execute these operations independently

¢ Atomic operations

¢ Memory fence operations

¢ Lock/unlock (Mutual exclusion) in CUDA programs

CS302 — Spring 2025 Lec.13.2 - Slide 4

Atomic operations in CUDA

¢ Recall from Lecture 6.2: Atomics are Read-Modify-Write
o Reads a memory location, modifies/updates the value read, writes back the result
o Different flavors of atomics based on the “Modify” function

¢ Hardware ensures that all parts of an atomic operation happen

without interruption
o Atomic operations are typically performed in shared LLC and are slow

¢ Serializes if two threads issue atomic operation to the same address

CS302 — Spring 2025 Lec.13.2 - Slide 5

Atomic operations in CUDA

¢ Atomics in CUDA are intrinsic fucntions

o Function calls are typically translated to a single ISA instructions
o Many flavors: add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap)

¢ Example:
int atomicAdd(int* address, int val)

Reads the 32-bit word old pointed to by address in global or shared memory, computes (old
+ val), and stores the result back to memory at the same address. The function returns old.

Different operand types possible: unsigned int, long, float...

CS302 — Spring 2025 Lec.13.2 - Slide 6

Atomic operations in CUDA

¢ int atomicExch(int* address, int val)

o Reads the 32-bit or 64-bit word old located at the address address in global
or shared memory and stores val back to memory at the same address. The
function returns old.

¢ int atomicCAS(int* address, int compare, int val)

o Reads the 16-bit, 32-bit or 64-bit word old located at the address address in
global or shared memory, computes (old == compare ? val : old), and

stores the result back to memory at the same address. The function returns
old.

CS302 — Spring 2025 Lec.13.2 - Slide 7

Example use of Atomics: Parallel Histogram Generation

¢ Count num. of ASCII characters in an input text

¢ Input: ASCII characters in array format
¢ Output: Histogram w. each bucket, # occurrences

CS302 — Spring 2025

2

Thread 0
Thread 1 =
Thread 2 4
Thread 3

| like to develop efficient
software for multicores,

multiprocessors. S
such, | find this course of
great use for my future

professional career.

Furthermore, | like to
earn about the paralle
hardware and softwar

!

Occurrences

A

a b c d...

Lec.13.2 - Slide 8

Example use of Atomics: Parallel Histogram Generation

_global__ void hist_calc(char *data, unsigned int length,
unsigned int * histogram)
{

unsigned int index = blockIdx.x * blockDim.x + threadIDx.x;

if (index < Tength) {
int position = data[i1] - ‘a’;

if (position >= 0 && position < 26) {
, atomicAdd(&histogram[position], 1); Necessary for correctness

put NN
RIS R S AR I B B S I B O

Serialized updates

CS302 — Spring 2025 Lec.13.2 - Slide 9

Example use of Atomics: Parallel Histogram Generation

I A
IRERIHEEEE %JL}/% ¢ ¢

Phase 1

N NN
—
Phase 2] Global Memory

¢ Reduce serialization through privatization

o Each threadblock keeps their own copy of histogram in the shared memory
o Merge private copies in the global memory in the next phase

Shared Memory

CS302 — Spring 2025

Example use of Atomics: Parallel Histogram Generation

_global__ void hist_calc(char *data, unsigned int length,
unsigned int * histogram){

__shared__ unsigned int histo_s[NUM_BINS]; //Number of bins in the histogram

//initialize private copies in parallel (BTw, why is there a loop?)
For (unsigned int bin = threadIdx.x; bin < NUM_BINS; bin += blockbDim.x) {
histo_s[bin] =

}

__syncthreadsQ); Advantages of this implementation:

(1) Less contention

unsigned int index = blockIdx.x * blockDim.x + threadIDx.x; (2) Shared memory atomics are faster

if (index < Tength) {
int position = datal[i] - ‘a’;
if (position >= 0 && pos1t1on < 26) {
atomicAdd(&histo_s[position], 1); //Atomic on shared memory
}
}
__syncthreads();
//Merging results onto the final histogram in the global memory
for (unsigned int bin = threadIdx.x; bin < NUM_BINS; bin += blockDim.x) {
unsigned int val = histo_s[bin];
if (val > 0) atomicAdd(&histo[bin], val); //Atomic add on global memory

}

CS302 — Spring 2025 Lec.13.2 - Slide 11

1

Twin Challenges of Synchronization in CUDA programs

¢ \Weak memory consistency model

& Lack of hardware cache coherence

CS302 — Spring 2025 Lec.13.2 - Slide 12

Weak Memory Model of CUDA

¢ CUDA has a weak memory model

o Informally, the order in which a thread writes data to memory is not necessarily the order in
which the data is observed being written by another thread

__device intX=1,Y =2;

thread 1 thread?2
__device _ void writeXY() __device _ void readXY ()
{ {

X =10; intB =Y,

Y = 20; int A = X;
} }

¢ CUDA also has relaxed atomics
o Loads, stores can bypass atomic operation

CS302 — Spring 2025 Lec.13.2 - Slide 13

GPU L1 Caches are NOT Coherent

|
Private 1 | }
to each : : REG REG REG REG REG REG
SM \}\:A SM SM SM SM SM SM
| 0L S L1$ L1$ L1$ OL1s || 11§
|
L ! ! ! ! ! !
I : Interconnection Network
! } } }
L 12$ 12$ 12$
: I Partition Partition Partition
I A A A

CS302 — Spring 2025

GDDR6/HBM3

GDDR6/HBM3

Off-chip DRAM = GDDR6/HBM3

- E— S S B S BN S B EEE BN BEE EEE BN BEE EEE BEE EEE B SEE B SIS B GEE EEE B BEE B BEE EE B BEE B BE B B Eae e oy

No HW cache
coherence
for L1 caches

Logically
shared
across all
SMs of a
GPU

Lec.13.2 - Slide 14

Memory Fence Operations in CUDA

¢ Fence instruction (threadfence) for ordering read/writes

“ensures that no writes made by the calling thread after the
___threadfence() are observed by any thread in the device as
occurring before any write by the calling thread before the
___threadfence()” --- NVIDIA documentation

CS302 — Spring 2025 Lec.13.2 - Slide 15

Memory Fence Operations in CUDA

¢ Informally, if a thread:

¢ makes a change A to a data item in global or shared memory

¢ executes a __ threadfence

¢ makes another change B to that data in the global or shared item

¢ Then another thread in the grid cannot read that item and observe
B, and then later read that item and observe A.

CS302 — Spring 2025 Lec.13.2 - Slide 16

Memory Fence operations in CUDA

¢ More generally, threadfence serves two purposes

¢ Visibility: Writes appearing before the fence by the calling thread
must become visible to any threads in the grid before any writes
after the fence in the calling thread.

¢ Ordering: Load, stores, atomics in the calling thread cannot be re-
ordered across a _threadfence.

CS302 — Spring 2025 Lec.13.2 - Slide 17

Memory Fence Operations in CUDA

__device _ intX=1,Y =2;

thread 1 thread?2
__device _ void writeXY() __device _ void readXY ()
{ A=1and B =20 {

X=10; is not possible intB =Y,

___threadfence; __threadfence;

Y = 20; int A =X;

CS302 — Spring 2025 Lec.13.2 - Slide 18

GPU L1 Caches are not Coherent: Need Fence

|
i | § _ threadfence % threadfence, ;
' |

: : REG REG REG REG REG REG i : _threadfence
Private : l SM SM SM SM SM SM , : writes back to
L1cache | [@L1S 1is || 113 L1$ ®1s || s |11 L2

: : ! ! 1 t t ! : i threadfence

: : Interconnection Network : | Invalidates L1

L ’ ! ! I ' contents
Shared ! : L2 $ L2$ L2 S : :
L2 Cache: : Partition Partition Partition : :

|
|
I GDDR6/HBM3 GDDR6/HBM3 Off-chip DRAM GDDR6/HBM3
|
|

CS302 — Spring 2025 Lec.13.2 - Slide 19

Example use of Fence: Parallel Sum of an Array of Integers

N
It

¢ Each threadblock calculates the partial sum of a sub-array
¢ A thread from each threadblock writes its partial result to memory
¢ The block that finishes last adds partial sums to the final sum

CS302 — Spring 2025 Lec.13.2 - Slide 20

Example use of Fence: Parallel Sum of an Array of Integers

__device___unsigned int count = 0;__shared __ bool isLastBlockDone;

__global ot (const float* array, unsigned int N,
@ oat” result)
{

float partialSum = calculatePartialSum(array, N); //Computes partial sum of the array

if (threadldx.x == 0) {
result[blockldx.x] = partialSum;
__threadfence(); I/l Ensures partialSum is written before count is incremented
unsigned int value = atomiclnc(&count, gridDim.x); //Increments count if below # of blocks
isLastBlockDone = (value == (gridDim.x - 1)); // Is it the last block?

}

__syncthreads(); //Guarantees that all threads of a block see the updated ‘isLastBlockDone’

if (isLastBlockDone) {
float totalSum = calculateTotalSum(result);
if (threadldx.x ==0){ //Thread O of the last block updates the final sum
result[0] = totalSum;

}

CS302 - Spril}g 2025 Lec.13.2 - Slide 21

Compiler can Allocate Variables in Registers

‘volatile’ : 3 3

qualifier directs :

|
|
|
compiler | REG REG REG REG REG REG : Co piler can
cache global
NOT to allocate : 2 Sl 2 2 M M :
a variable in ! oL1S L1$ L1S L1S oL s L1S |
registeror L1 | } $ } $ } $:
: Interconnection Network :
; t t t .
| 12$ 12$ P 12$ |
I Partition Partition Partition I Remember
SE— —1 ———————— -l ———————————————— 1—————————' L1 cache is
incoherent

GDDR6/HBM3 GDDR6/HBM3 Off-chip DRAM GDDR6/HBM3

CS302 — Spring 2025 Lec.13.2 - Slide 22

Example (2) use of fences: Producer — Consumer Pattern

¢ Producer writes to shared data items it wants to communicate
¢ Producer updates a flag to notify data item is ready

¢ Consumer waits for the flag to be updated in a loop
¢ Consumer reads the data items for processing

CS302 — Spring 2025 Lec.13.2 - Slide 23

Example (2) use of fences: Producer — Consumer Pattern

(global) volatile Flags *flags; //Structure Flags contain both data and status flag

Producer Consumer
volatile Flags *mFlags = flags + blockldx.x; volatile Flags *sFlags = flags + (blockldx.x - 1)
mFlag->sum = SUM:; // Write to data while (sFlag->status == 0); // wait in busy loop
__threadfence(); //Ensures status is updated __threadfence(); //Ensures data is not read
/| after write to data I/ before updated status is read

mFlag->status = 1; /Set flag to notify consumer ~ accumulate += sFlag->sum; /Read data item

Stripped down code snippet from NVIDIA’'s cuML library

CS302 — Spring 2025 Lec.13.2 - Slide 24

Lock and Unlock (Mutual Exclusion) in CUDA program

__global__intlock =0; //0 - lock is free. 1 = locked

while (atomicCAS(&lock, 0, 1) == 0); // wait until lock value is zero

___threadfence(); // Ensures that code in the critical section
//does not start executing before lock is acquired

/[critical section

___threadfence(); /[Ensures the critical section finishes before lock release
atomicExcg(&lock, 0); /| Release lock by setting it to zero

CS302 — Spring 2025 Lec.13.2 - Slide 25

Example Use of Locks: Parallel Hash Table Insertion

nfy o
e 8
X2 a Hash collision
d4w -
Xy3 F(x) L Need locks upon
bbe g hash collision
s/ /Hash function)
WSX a

7 |

Hash table

CS302 — Spring 2025

(linear probing) Lec.13.2 - Slide 26

Example Use of Locks: Parallel Hash Table Insertion

__device__ void hash_insert (tHashTable *g_hashtable, unsigned key, unsigned value)

~

unsigned hash = hash_func(key); //hash index
BaseEntry *base = &g_hashtable->mValues[hash];

while(atomicCAS(&base->mLock, 0, 1) == 0); //Lock acquire
__threadfence;

ent->mKey = key; ent->mValue = value;
ent->mNext = base->mindex;
g_hashtable->mValues[hash].mIndex = ent;

__threadfence;
atomicExcg(&base->mLock, 0); //Unlock

}
}

CS302 — Spring 2025 Lec.13.2 - Slide 27

Summary: Fine-grain Synchronization in CUDA

¢ Bulk synchronous programs use barrier and kernel decomposition

¢ Fence and atomic operations allow fine-grain synchronization
defined for each individual thread

¢ Fence and atomics together can create lock and unlock operations

CS302 — Spring 2025 Lec.13.2 - Slide 28

